Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Adv Drug Deliv Rev ; 197: 114828, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320056

ABSTRACT

Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.


Subject(s)
Nanomedicine , Nanoparticles , Humans , Nanomedicine/methods , Nanotechnology/methods , Nanoparticles/toxicity , Nanoparticles/chemistry , Lysosomes
2.
J Mater Chem B ; 11(16): 3484-3510, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2288921

ABSTRACT

Messenger RNA (mRNA) has become a key focus in the development of therapeutic agents, showing significant potential in preventing and treating a wide range of diseases. The COVID-19 pandemic in 2020 has accelerated the development of mRNA nucleic therapeutics and attracted significant investment from global biopharmaceutical companies. These therapeutics deliver genetic information into cells without altering the host genome, making them a promising treatment option. However, their clinical applications have been limited by issues such as instability, inefficient in vivo delivery, and low translational efficiency. Recent advances in molecular design and nanotechnology have helped overcome these challenges, and several mRNA formulations have demonstrated promising results in both animal and human testing against infectious diseases and cancer. This review provides an overview of the latest research progress in structural optimization strategies and delivery systems, and discusses key considerations for their future clinical use.


Subject(s)
COVID-19 , Pandemics , Animals , Humans , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , Nanotechnology/methods , Drug Delivery Systems/methods
3.
Nanomedicine (Lond) ; 17(25): 1981-2005, 2022 10.
Article in English | MEDLINE | ID: covidwho-2271158

ABSTRACT

The development of rapid, noninvasive diagnostics to detect lung diseases is a great need after the COVID-2019 outbreak. The nanotechnology-based approach has improved imaging and facilitates the early diagnosis of inflammatory lung diseases. The multifunctional properties of nanoprobes enable better spatial-temporal resolution and a high signal-to-noise ratio in imaging. Targeted nanoimaging agents have been used to bind specific tissues in inflammatory lungs for early-stage diagnosis. However, nanobased imaging approaches for inflammatory lung diseases are still in their infancy. This review provides a solution-focused approach to exploring medical imaging technologies and nanoprobes for the detection of inflammatory lung diseases. Prospects for the development of contrast agents for lung disease detection are also discussed.


Subject(s)
Antineoplastic Agents , COVID-19 , Nanoparticles , Humans , COVID-19/diagnostic imaging , Nanotechnology/methods , Diagnostic Imaging/methods , Contrast Media , COVID-19 Testing
4.
Biosensors (Basel) ; 13(1)2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2244478

ABSTRACT

Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.


Subject(s)
Biosensing Techniques , Nanoparticles , Nanostructures , Nanotubes, Carbon , Nanowires , Nanotechnology/methods , Biosensing Techniques/methods
6.
Adv Drug Deliv Rev ; 181: 114081, 2022 02.
Article in English | MEDLINE | ID: covidwho-1568454

ABSTRACT

With numerous recent advances, the field of therapeutic nucleic acid nanotechnology is now poised for clinical translation supported by several examples of FDA-approved nucleic acid nanoformulations including two recent mRNA-based COVID-19 vaccines. Within this rapidly growing field, a new subclass of nucleic acid therapeutics called nucleic acid nanoparticles (NANPs) has emerged in recent years, which offers several unique properties distinguishing it from traditional therapeutic nucleic acids. Key unique aspects of NANPs include their well-defined 3D structure, their tunable multivalent architectures, and their ability to incorporate conditional activations of therapeutic targeting and release functions that enable diagnosis and therapy of cancer, regulation of blood coagulation disorders, as well as the development of novel vaccines, immunotherapies, and gene therapies. However, non-consolidated research developments of this highly interdisciplinary field create crucial barriers that must be overcome in order to impact a broader range of clinical indications. Forming a consortium framework for nucleic acid nanotechnology would prioritize and consolidate translational efforts, offer several unifying solutions to expedite their transition from bench-to-bedside, and potentially decrease the socio-economic burden on patients for a range of conditions. Herein, we review the unique properties of NANPs in the context of therapeutic applications and discuss their associated translational challenges.


Subject(s)
Nanoparticles/chemistry , Nanoparticles/therapeutic use , Nucleic Acids/chemistry , Nucleic Acids/therapeutic use , Animals , COVID-19/immunology , COVID-19 Vaccines/immunology , Drug Delivery Systems/methods , Humans , Immunotherapy/methods , Nanotechnology/methods , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
7.
Mikrochim Acta ; 188(12): 434, 2021 11 27.
Article in English | MEDLINE | ID: covidwho-1536308

ABSTRACT

A novel and sensitive voltammetric nanosensor was developed for the first time for trace level monitoring of favipiravir based on gold/silver core-shell nanoparticles (Au@Ag CSNPs) with conductive polymer poly (3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) and functionalized multi carbon nanotubes (F-MWCNTs) on a glassy carbon electrode (GCE). The formation of Au@Ag CSNPs/PEDOT:PSS/F-MWCNT composite was confirmed by various analytical techniques, including X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (SEM). Under the optimized conditions and at a typical working potential of + 1.23 V (vs. Ag/AgCl), the Au@Ag CSNPs/PEDOT:PSS/F-MWCNT/GCE revealed linear quantitative ranges from 0.005 to 0.009 and 0.009 to 1.95 µM with a limit of detection 0.46 nM (S/N = 3) with acceptable relative standard deviations (1.1-4.9 %) for pharmaceutical formulations, urine, and human plasma samples without applying any sample pretreatment (1.12-4.93%). The interference effect of antiviral drugs, biological compounds, and amino acids was negligible, and the sensing system demonstrated outstanding reproducibility, repeatability, stability, and reusability. The findings revealed that this assay strategy has promising applications in diagnosing FAV in clinical samples, which could be attributed to the large surface area on active sites and high conductivity of bimetallic nanocomposite.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Electrochemistry/methods , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nanomedicine/methods , Nanotechnology/methods , Pyrazines/pharmacology , Colloids/chemistry , Electrodes , Gold/chemistry , Humans , Limit of Detection , Linear Models , Nanotubes , Polymers/chemistry
8.
Adv Drug Deliv Rev ; 181: 114033, 2022 02.
Article in English | MEDLINE | ID: covidwho-1520626

ABSTRACT

Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.


Subject(s)
Brain Neoplasms/surgery , COVID-19/surgery , Neurosurgery/methods , Animals , Blood-Brain Barrier/surgery , Glioblastoma/surgery , Humans , Nanotechnology/methods , Pandemics/statistics & numerical data , Tumor Microenvironment/physiology
9.
Adv Sci (Weinh) ; 8(18): e2101155, 2021 09.
Article in English | MEDLINE | ID: covidwho-1316191

ABSTRACT

Accessible and adaptable nucleic acid diagnostics remains a critical challenge in managing the evolving COVID-19 pandemic. Here, an integrated molecular nanotechnology that enables direct and programmable detection of SARS-CoV-2 RNA targets in native patient specimens is reported. Termed synergistic coupling of responsive equilibrium in enzymatic network (SCREEN), the technology leverages tunable, catalytic molecular nanostructures to establish an interconnected, collaborative architecture. SCREEN mimics the extraordinary organization and functionality of cellular signaling cascades. Through programmable enzyme-DNA nanostructures, SCREEN activates upon interaction with different RNA targets to initiate multi-enzyme catalysis; through system-wide favorable equilibrium shifting, SCREEN directly transduces a single target binding into an amplified electrical signal. To establish collaborative equilibrium coupling in the architecture, a computational model that simulates all reactions to predict overall performance and optimize assay configuration is developed. The developed platform achieves direct and sensitive RNA detection (approaching single-copy detection), fast response (assay reaction is completed within 30 min at room temperature), and robust programmability (across different genetic loci of SARS-CoV-2). When clinically evaluated, the technology demonstrates robust and direct detection in clinical swab lysates to accurately diagnose COVID-19 patients.


Subject(s)
COVID-19/virology , DNA, Catalytic/genetics , Nanostructures/chemistry , SARS-CoV-2/genetics , Humans , Limit of Detection , Molecular Diagnostic Techniques/methods , Nanotechnology/methods , Pandemics/prevention & control , RNA, Viral/genetics , Specimen Handling/methods
10.
Molecules ; 25(20)2020 Oct 13.
Article in English | MEDLINE | ID: covidwho-1305732

ABSTRACT

Nano-islands are entities (droplets or other shapes) that are formed by spontaneous dewetting (agglomeration, in the early literature) of thin and very thin metallic (especially gold) films on a substrate, done by post-deposition heating or by using other sources of energy. In addition to thermally generated nano-islands, more recently, nanoparticle films have also been dewetted, in order to form nano-islands. The localized surface plasmon resonance (LSPR) band of gold nano-islands was found to be sensitive to changes in the surrounding environment, making it a suitable platform for sensing and biosensing applications. In this review, we revisit the development of the concept of nano-island(s), the thermodynamics of dewetting of thin metal films, and the effect of the substrate on the morphology and optical properties of nano-islands. A special emphasis is made on nanoparticle films and their applications to biosensing, with ample examples from the authors' work.


Subject(s)
Gold/chemistry , Nanocomposites/chemistry , Point-of-Care Systems , Surface Plasmon Resonance/instrumentation , Animals , Biosensing Techniques/instrumentation , Growth Hormone/analysis , Humans , Lab-On-A-Chip Devices , Milk/chemistry , Nanotechnology/methods , Surface Plasmon Resonance/methods
11.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1304671

ABSTRACT

Hollow vesicles made from a single or double layer of block-copolymer molecules, called polymersomes, represent an important technological platform for new developments in nano-medicine and nano-biotechnology. A central aspect in creating functional polymersomes is their combination with proteins, especially through encapsulation in the inner cavity of the vesicles. When producing polymersomes by techniques such as film rehydration, significant proportions of the proteins used are trapped in the vesicle lumen, resulting in high encapsulation efficiencies. However, because of the difficulty of scaling up, such methods are limited to laboratory experiments and are not suitable for industrial scale production. Recently, we developed a scalable polymersome production process in stirred-tank reactors, but the statistical encapsulation of proteins resulted in fairly low encapsulation efficiencies of around 0.5%. To increase encapsulation in this process, proteins were genetically fused with hydrophobic membrane anchoring peptides. This resulted in encapsulation efficiencies of up to 25.68%. Since proteins are deposited on the outside and inside of the polymer membrane in this process, two methods for the targeted removal of protein domains by proteolysis with tobacco etch virus protease and intein splicing were evaluated. This study demonstrates the proof-of-principle for production of protein-functionalized polymersomes in a scalable process.


Subject(s)
Cell Encapsulation/methods , Nanotechnology/methods , Peptides/chemistry , Polymers/chemistry , Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes/chemistry
12.
Viruses ; 13(7)2021 06 24.
Article in English | MEDLINE | ID: covidwho-1289018

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health problem that the WHO declared a pandemic. COVID-19 has resulted in a worldwide lockdown and threatened to topple the global economy. The mortality of COVID-19 is comparatively low compared with previous SARS outbreaks, but the rate of spread of the disease and its morbidity is alarming. This virus can be transmitted human-to-human through droplets and close contact, and people of all ages are susceptible to this virus. With the advancements in nanotechnology, their remarkable properties, including their ability to amplify signal, can be used for the development of nanobiosensors and nanoimaging techniques that can be used for early-stage detection along with other diagnostic tools. Nano-based protection equipment and disinfecting agents can provide much-needed protection against SARS-CoV-2. Moreover, nanoparticles can serve as a carrier for antigens or as an adjuvant, thereby making way for the development of a new generation of vaccines. The present review elaborates the role of nanotechnology-based tactics used for the detection, diagnosis, protection, and treatment of COVID-19 caused by the SARS-CoV-2 virus.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/diagnosis , Nanotechnology/methods , Nanotechnology/trends , Biosensing Techniques/methods , COVID-19/prevention & control , COVID-19 Vaccines , Communicable Disease Control/methods , Global Health , Humans
13.
Philos Trans R Soc Lond B Biol Sci ; 376(1831): 20200228, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1284967

ABSTRACT

The goal of achieving enhanced diagnosis and continuous monitoring of human health has led to a vibrant, dynamic and well-funded field of research in medical sensing and biosensor technologies. The field has many sub-disciplines which focus on different aspects of sensor science; engaging engineers, chemists, biochemists and clinicians, often in interdisciplinary teams. The trends which dominate include the efforts to develop effective point of care tests and implantable/wearable technologies for early diagnosis and continuous monitoring. This review will outline the current state of the art in a number of relevant fields, including device engineering, chemistry, nanoscience and biomolecular detection, and suggest how these advances might be employed to develop effective systems for measuring physiology, detecting infection and monitoring biomarker status in wild animals. Special consideration is also given to the emerging threat of antimicrobial resistance and in the light of the current SARS-CoV-2 outbreak, zoonotic infections. Both of these areas involve significant crossover between animal and human health and are therefore well placed to seed technological developments with applicability to both human and animal health and, more generally, the reviewed technologies have significant potential to find use in the measurement of physiology in wild animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19/diagnosis , Synthetic Biology/methods , Wearable Electronic Devices , Zika Virus Infection/veterinary , Zoonoses/diagnosis , Animals , Animals, Wild/microbiology , Animals, Wild/parasitology , Animals, Wild/virology , Biomarkers/analysis , Cell Engineering/methods , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Point-of-Care Testing , Zika Virus Infection/diagnosis
15.
Nat Biomed Eng ; 5(7): 666-677, 2021 07.
Article in English | MEDLINE | ID: covidwho-1241951

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 µl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.


Subject(s)
Biosensing Techniques/methods , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nanotechnology/methods , Severe acute respiratory syndrome-related coronavirus/pathogenicity , COVID-19/virology , Humans , Single-Domain Antibodies/immunology
16.
Life Sci ; 278: 119580, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1225325

ABSTRACT

COVID-19 pandemic is still a major risk to human civilization. Besides the global immunization policy, more than five lac new cases are documented everyday. Some countries newly implement partial/complete nationwid lockdown to mitigate recurrent community spreading. To avoid the new modified stain of SARS-CoV-2 spreading, some countries imposed any restriction on the movement of the citizens within or outside the country. Effective economical point of care diagnostic and therapeutic strategy is vigorously required to mitigate viral spread. Besides struggling with repurposed medicines, new engineered materials with multiple unique efficacies and specific antiviral potency against SARS-CoV-2 infection may be fruitful to save more lives. Nanotechnology-based engineering strategy sophisticated medicine with specific, effective and nonhazardous delivery mechanism for available repurposed antivirals as well as remedial for associated diseases due to malfeasance in immuno-system e.g. hypercytokinaemia, acute respiratory distress syndrome. This review will talk about gloomy but critical areas for nanoscientists to intervene and will showcase about the different laboratory diagnostic, prognostic strategies and their mode of actions. In addition, we speak about SARS-CoV-2 pathophysiology, pathogenicity and host specific interation with special emphasis on altered immuno-system and also perceptualized, copious ways to design prophylactic nanomedicines and next-generation vaccines based on recent findings.


Subject(s)
COVID-19/therapy , Theranostic Nanomedicine/methods , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/pathology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Drug Delivery Systems/methods , Humans , Immunization/methods , Nanotechnology/methods , Precision Medicine/methods , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
17.
Life Sci ; 278: 119561, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1201658

ABSTRACT

Respiratory viral infections are major cause of highly mortal pandemics. They are impacting socioeconomic development and healthcare system globally. These emerging deadly respiratory viruses develop newer survival strategies to live inside host cells and tricking the immune system of host. Currently, medical facilities, therapies and research -development teams of every country kneel down before novel corona virus (SARS-CoV-2) which claimed ~2,828,629 lives till date. Thus, there is urgent requirement of novel treatment strategies to combat against these emerging respiratory viral infections. Nanocarriers come under the umbrella of nanotechnology and offer numerous benefits compared to traditional dosage forms. Further, unique physicochemical properties (size, shape and surface charge) of nanocarriers provide additional advantage for targeted delivery. This review discusses in detail about the respiratory viruses, their transmission mode and cell invasion pathways, survival strategies, available therapies, and nanocarriers for the delivery of therapeutics. Further, the role of nanocarriers in the development of treatment therapy against SARS-CoV-2 is also overviewed.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/therapy , Nanomedicine/methods , Respiratory Tract Infections/therapy , Virus Diseases/therapy , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Drug Carriers/chemistry , Drug Delivery Systems/methods , Host-Pathogen Interactions/drug effects , Humans , Nanostructures/chemistry , Nanotechnology/methods , Respiratory Tract Infections/prevention & control , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Diseases/prevention & control , Virus Internalization/drug effects , Viruses/drug effects
18.
Int J Mol Sci ; 21(14)2020 Jul 20.
Article in English | MEDLINE | ID: covidwho-1190406

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in contact. Detection based on non-contact optical techniques is very helpful in managing the spread of the virus, and to aid in the disinfection of surfaces. Nanomaterial-based methods are proven suitable for rapid detection. Given the immense need for science led innovative solutions, this manuscript critically reviews recent literature to specifically illustrate nano-engineered effective and rapid solutions. In addition, all the different techniques are critically analyzed, compared, and contrasted to identify the most promising methods. Moreover, promising research ideas for high accuracy of detection in trace concentrations, via color change and light-sensitive nanostructures, to assist fingerprint techniques (to identify the virus at the contact surface of the gas and solid phase) are also presented.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Metal-Organic Frameworks/chemistry , Nanotechnology/methods , Pneumonia, Viral/diagnosis , Point-of-Care Systems , COVID-19 , Genome, Viral/genetics , Humans , Metal Nanoparticles/chemistry , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Whole Genome Sequencing
20.
Int J Pharm ; 602: 120580, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1174310

ABSTRACT

Counterfeiting has never been more challenging than during the COVID-19 pandemic as counterfeit test kits and therapeutics have been discovered in the market. Current anti-counterfeiting labels have weaknesses: they can either be duplicated easily, are expensive or ill-suited for the existing complex supply chains. While RFID tags provide for an excellent alternative to current anti-counterfeiting methods, they can prove to be expensive and other routes involving nanomaterials can be difficult to encrypt. A DNA based anticounterfeiting system has significant advantages such as relative ease of synthesis and vast data storage abilities, along with great potential in encryption. Although DNA is equipped with such beneficial properties, major challenges that limit its real-world anti-counterfeiting applications include protection in harsh environments, rapid inexpensive sequence determination, and its attachment to products. This review elaborates the current progress of DNA based anti-counterfeiting systems and identifies technological gaps that need to be filled for its practical application. Progress made on addressing the primary challenges associated with the use of DNA, and potential solutions are discussed.


Subject(s)
Base Sequence/genetics , Counterfeit Drugs , Nanostructures/analysis , Pandemics , Radio Frequency Identification Device , COVID-19 , Consumer Product Safety , DNA , Fraud/prevention & control , Humans , Nanotechnology/methods , Quality Assurance, Health Care , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL